Benefits of NAD+

Benefits of NAD+ (by taking NMN or NA supplements; NMN and NA will be further discussed) has been shown in animal studies to improve the lifespan and healthspan by–but not limited to– the mechanisms as summarized in figure 5.  NAD+ can improve our nervous system, improve liver function, improve blood flow, protect against age-related diseases, lower inflammation, and even improve fertility.  


Figure 6: Some of the benefits of NAD+
Figure borrowed from Rajman et al., “Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence,” Cell Metabolism 27, March 6, 2018, pg.535

 

NMN and NR treatments can improve cognition, motor function, and preserve neuronal functions, and sometimes reverse, neuronal damages.

For more information, see references below:

 

Park, J.H., Long, A., Owens, K., and Kristian, T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95, 102–110.

 

Wei, C.C., Kong, Y.Y., Li, G.Q., Guan, Y.F., Wang, P., and Miao, C.Y. (2017b). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7, 717.

 

Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A.A., and Pasinetti, G.M. (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-g coactivator 1a regulated b-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588.

 

Hou, Y., Lautrup, S., Cordonnier, S., Wang, Y., Croteau, D.L., Zavala, E., Zhang, Y., Moritoh, K., O’Connell, J.F., Baptiste, B.A., et al. (2018). NAD+supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl. Acad. Sci. USA. Published online February 5, 2018.

 

Long, A.N., Owens, K., Schlappal, A.E., Kristian, T., Fishman, P.S., and Schuh, R.A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19.

 

Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., Moullan, N., Potenza, F., Schmid, A.W., Rietsch, S., et al. (2017). Enhancing mitochondrial proteostasis reduces amyloid-b proteotoxicity. Nature 552, 187–193.

 

Wang, X., Hu, X., Yang, Y., Takata, T., and Sakurai, T. (2016). Nicotinamide mononucleotide protects against b-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9.

 

Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882–896.

 

Brown, K.D., Maqsood, S., Huang, J.Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E., and Jaffrey, S.R. (2014). Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068.

 

Dutca, L.M., Stasheff, S.F., Hedberg-Buenz, A., Rudd, D.S., Batra, N., Blodi, F.R., Yorek, M.S., Yin, T., Shankar, M., Herlein, J.A., et al. (2014). Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest. Ophthalmol. Vis. Sci. 55, 8330–8341.

 

 

Hamity, M.V., White, S.R., Walder, R.Y., Schmidt, M.S., Brenner, C., and Hammond, D.L. (2017). Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 158, 962–972.

 

Lin, J.B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., et al. (2016). NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85.

 

Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M.S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., and Duplus, E. (2017). Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. FASEB J. 31, 5440–5452.

 

Yin, T.C., Britt, J.K., De Jesu´ s-Corte´ s, H., Lu, Y., Genova, R.M., Khan, M.Z., Voorhees, J.R., Shao, J., Katzman, A.C., Huntington, P.J., et al. (2014). P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep. 8, 1731–1740.

 

Zhuo, L., Fu, B., Bai, X., Zhang, B., Wu, L., Cui, J., Cui, S., Wei, R., Chen, X., and Cai, G. (2011). NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem. 27, 681–690.

In vitro settings, it was shown that coronavirus infection “strikingly depletes cellular NAD+ levels, and boosting NAD+ pharmacologically or with NAD+ precursors increases the enzymatic activity of antiviral [agents] and inhibits coronavirus replication.”

Reference:

Charles Brenner, “Viral Infection as an NAD+ battlefield,” Nature Metabolism 4, 2-3 (2022). 

Decline in NAD+ is associated with loss of oocyte quality. NAD+ supplementation led to restoration of oocyte yield in 14-month-old female mice. 

Reference:

Bertoldo et al., “NAD+ Repletion Rescues Female Fertility during Reproductive Aging,” Cell Rep  2020 Feb 11;30(6):1670-1681.

NAD+ supplements improve muscle function by improving mitochondrial function, muscle endurance, running capacity, and capabilities to recover from muscle injury. See below for references:

 

Gomes, A.P., Price, N.L., Ling, A.J., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638.

 

Canto´ , C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P., et al. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847.

 

Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E.R., Lutolf, M.P., Aebersold, R., et al. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443.

 

Goody, M.F., Kelly, M.W., Reynolds, C.J., Khalil, A., Crawford, B.D., and Henry, C.A. (2012). NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol. 10, e1001409.

 

Ryu, D., Zhang, H., Ropelle, E.R., Sorrentino, V., Ma´ zala, D.A., Mouchiroud, L., Marshall, P.L., Campbell, M.D., Ali, A.S., Knowels, G.M., et al. (2016). NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl. Med. 8, 361ra139.   Improves mitochondrial function, recovery from muscle injury, and running capacity in mice (Ryu et al 2016).

Facebook
Twitter
LinkedIn
Pinterest

Receive new post alerts!

You have been successfully Subscribed! Ops! Something went wrong, please try again.