Benefits of NAD+ (by taking NMN or NA supplements; NMN and NA will be further discussed) has been shown in animal studies to improve the lifespan and healthspan by–but not limited to– the mechanisms as summarized in figure 5. NAD+ can improve our nervous system, improve liver function, improve blood flow, protect against age-related diseases, lower inflammation, and even improve fertility. Improving and Preserving Neuronal Function NMN and NR treatments can improve cognition, motor function, and preserve neuronal functions, and sometimes reverse, neuronal damages. For more information, see references below: Park, J.H., Long, A., Owens, K., and Kristian, T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95, 102–110. Wei, C.C., Kong, Y.Y., Li, G.Q., Guan, Y.F., Wang, P., and Miao, C.Y. (2017b). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7, 717. Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A.A., and Pasinetti, G.M. (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-g coactivator 1a regulated b-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588. Hou, Y., Lautrup, S., Cordonnier, S., Wang, Y., Croteau, D.L., Zavala, E., Zhang, Y., Moritoh, K., O’Connell, J.F., Baptiste, B.A., et al. (2018). NAD+supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl. Acad. Sci. USA. Published online February 5, 2018. Long, A.N., Owens, K., Schlappal, A.E., Kristian, T., Fishman, P.S., and Schuh, R.A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19. Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., Moullan, N., Potenza, F., Schmid, A.W., Rietsch, S., et al. (2017). Enhancing mitochondrial proteostasis reduces amyloid-b proteotoxicity. Nature 552, 187–193. Wang, X., Hu, X., Yang, Y., Takata, T., and Sakurai, T. (2016). Nicotinamide mononucleotide protects against b-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9. Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882–896. Brown, K.D., Maqsood, S., Huang, J.Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E., and Jaffrey, S.R. (2014). Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068. Dutca, L.M., Stasheff, S.F., Hedberg-Buenz, A., Rudd, D.S., Batra, N., Blodi, F.R., Yorek, M.S., Yin, T., Shankar, M., Herlein, J.A., et al. (2014). Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest. Ophthalmol. Vis. Sci. 55, 8330–8341. Hamity, M.V., White, S.R., Walder, R.Y., Schmidt, M.S., Brenner, C., and Hammond, D.L. (2017). Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 158, 962–972. Lin, J.B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., et al. (2016). NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85. Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M.S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., and Duplus, E. (2017). Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. FASEB J. 31, 5440–5452. Yin, T.C., Britt, J.K., De Jesu´ s-Corte´ s, H., Lu, Y., Genova, R.M., Khan, M.Z., Voorhees, J.R., Shao, J., Katzman, A.C., Huntington, P.J., et al. (2014). P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep. 8, 1731–1740. Zhuo, L., Fu, B., Bai, X., Zhang, B., Wu, L., Cui, J., Cui, S., Wei, R., Chen, X., and Cai, G. (2011). NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem. 27, 681–690. Improving Liver Function NAD+ protects the liver from fat accumulation, hepatitis, high LDL cholesterol levels, and insulin resistance. For more information, see references below: Mukherjee, S., Chellappa, K., Moffitt, A., Ndungu, J., Dellinger, R.W., Davis, J.G., Agarwal, B., and Baur, J.A. (2017). Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65, 616–630. Gariani, K., Ryu, D., Menzies, K.J., Yi, H.S., Stein, S., Zhang, H., Perino, A., Lemos, V., Katsyuba, E., Jha, P., et al. (2017). Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132–141. Altschul, R., Hoffer, A., and Stephen, J.D. (1955). Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. Biophys. 54, 558–559. Garg, A., Sharma, A., Krishnamoorthy, P., Garg, J., Virmani, D., Sharma, T., Stefanini, G., Kostis, J.B., Mukherjee, D., and Sikorskaya, E. (2017). Role of Niacin in current clinical practice: a systematic review. Am. J. Med. 130, 173–187. Rivin, A.U. (1962). Hypercholesterolemia. Use of niacin and niacin combinations in therapy. Calif. Med. 96, 267–269. Gariani, K., Menzies, K.J., Ryu, D., Wegner, C.J., Wang, X., Ropelle, E.R., Moullan, N., Zhang, H., Perino, A., Lemos, V., et al. (2016). Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204. Protecting Blood Flow Function NAD supplementation is a potential approach to increase mobility in the aged-population that suffer from slow wound healing and muscle pain as a result of decreased blood flow. Old mice treated with NMN improved blood flow and endurance. See below for references: de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S., and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530. Rajman et al., “Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence,” Cell Metabolism 27, March 6, 2018, pg.529 -547 Protecting Heart Function Adequate NAD+ levels are essential for recovery of age-related heart diseases. See below for references: Ryu, D., Zhang, H., Ropelle, E.R.,